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Abstract. The formation of amorphous zones, induced by heavy-ion irradiation of 111-V 
compounds and theic temary alloys. was studied using aeomputer simulation. For this purpose, 
the so-called sillium model, which has beM used to model amorphous Si and Ge, was modified 
and subsequently employed in Ill-V compounds. The modification had to take into account 
different boundary conditions and different interatomic potentials in order to account for the 
partly ionic character of the bonds in these solids. For the Coulomb part of the potential we 
assumed rigid point ions with charges equal to the tramvetsal effective charge. The results 
of the simulation show thal the model is capable of producing a locally disordered structure 
surrounded by a perfect crystal lattice, provided that the energy of the initial displacement 
cascade is sufficiently high. It is also shown that the virtual cvstal approximation is not 
adequate to confirm the experimentally observed differences in amorphization behveen GaAs 
and ALoasGao.isAs. 

1. Introduction 

Radiation damage in semiconductors results primarily in amorphization, which is a 
consequence of the highly directional character of covalent bonds. There are two distinct 
mechanisms responsible for the onset of amorphization. One prevails at light-ion irradiations 
where the concentration of point defects and the energy density in an individual displacement 
cascade are not high enough for a crystalline to amorphous (c-a) phase transition. With 
increasing ion dose, however, the overall concentration of point defects in the irradiated 
region can reach the point of the c-a transition. This is known as the point-defect build-up 
mechanism. On the other hand, heavy ions (with their mass comparable to the mass of 
atoms in the solid) produce highly concentrated displacement cascades and the material is 
amorphized locally, around the path of individual ions. The result is creation of a small (- 
3 nm in diameter) amorphous zone. This mechanism is called direct-impact amorphizution. 

The ternary alloy AI,Gal-,As is, together with GaAs, very important for the production 
of heterostructures. In experimental research into the response of both materials to 
irradiation with heavy ions we have found [l,  2.1 that A1,Gal-,As is much more resistant to 
amorphization than GaAs, and that this resistance increases with increased AI content. In 
particular, it has been shown that under all conditions of irradiation there was no evidence 
of direct-impact amorphization in an Al,Gal-,As alloy with high AI content (x  = 85%). 
This peculiar result has motivated the present study. 
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It is already clear that the increased resistivity of AI,Gat-,As, with high AI content, 
to amorphization cannot be attributed to a lower energy density+ of the collision cascade 
in A10,&~.15As than in GaAs (AI is a significantly lighter atom than Ga and the energy 
transfer during a single collision is smaller) for two reasons. 

(1) Kr+ ions produce direct-impact amorphization in GaAs [4,5] and the cascade energy 
density for this case can be compared to the energy density of cascades of Xe+ ions in 
Ab.ssG~.~sAs .  Xe’ ions are heavier then Kr+ ions, and therefore slower at the same 
kinetic energy. Hence, they have a shorter range and the density of energy deposition is 
relatively higher. 

(2) Direct-impact amorphization is also observed in 50 keV Kr+ irradiation of GaP [6], 
which has atomic masses very similar to those of AIAs. 

Another possible explanation for the increased resistivity to amorphization would be 
that direct-impact amorphization in AI,Ga,-,As does occur. but the amorphous zones are 
subsequently rapidly recrystallized. Since no direct-impact amorphization has been observed 
even at 30 K, this explanation also seems to be ruled out. We are thus led to conclude that 
the structure and/or stability of the amorphous state in Al,Ga,-,As is significantly different 
from a similar condition in GaAs (and other ‘common’ m-V semiconductors). 

To investigate the above hypothesis we have studied, using computer simulation, the 
structure of individual amorphous zones in III-V semiconductors. Amorphization is a 
complex phenomenon and is still far from being well understood. Consequently, we shall 
assume, in what follows. that the structure of the amorphous zones is not just a crystalline 
state containing a high density of vacancies, divacancies. interstitials, diinterstitials etc, but is 
pictured as a tetrahedral glass derived from the zincblende structure by topological disorder. 
Therefore we expect fairly sharp interfaces in a partially amorphous material separating 
regions that have relaxed to an amorphous phase from those that have not. A model of this 
kind, which has gained wide acceptance, is the so-called conrinrtous-random-nerwork model 
[7]. In this model every atom is almost perfectly tetrahedrally coordinated with its nearest 
neighbours. Distortions of bond lengths and bond angles from the values in the crystalline 
phase are of the order of 10%. Although the structure of the amorphous zones lacks the 
long-range crystalline order, the bond orbitals may still be visualized as directed hybridized 
orbitals of the familiar sp3 type. This circumstance will be accounted for by an appropriate 
choice of the interatomic potential corresponding to short-range forces. 

2. The sillium model and its application to modelling of amorphous zones 

The algorithm for modelling of amorphization was adopted from the so-called sillium 
model [8], which is based on bond switching between two pairs of suitably chosen atoms 
(preserving the fourfold coordination), simulation of thermal relaxation using the Metropolis 
algorithm 191, and the use of the Keating potential [lo] for the calculation of inter-atomic 
forces. In its original formulation the sillium model was used for construction of an infinite 
amorphous structure of a tetrahedrally bonded monoatomic solid, such as Si or Ge. The 
resulting radial distribution (RDF) compared favourably with the experimentally determined 
RDF of amorphous Ge, provided that the annealing process is performed carefully IS]. 

In spite of its deficiencies and limitations, in particular the use of a rather simple 
semiempirical interatomic potential, the sillium model nevertheless offers a useful method 

t It is P very plausible assumption that a critical energy density must be reached before the merial is rendered 
amorphous 131. 
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for constructing and categorizing realistic random networks. It is also true that its application 
to modelling of amorphous zones with their concomitant amorphous-crystal interfaces will 
perhaps further amplify the known deficiencies of the model. Considering the experimental 
results discussed above, however, it may still be of some interest to examine the structure 
of the resulting amorphous zones. 

The actual rules determining the model are essentially those of Wooten and Weaire [8] 
and we list them for the sake of completeness. 

(1) Every atom is bonded to four neighbours. 
(2) In the process of randomization (or relaxation) the switching of bonds takes place, 

i.e. the bonds between two pairs of atoms are broken and a new pair of bonds is subsequently 
formed, between the same four atoms, but with the different atom pairs in each bond ('bond 
transposition'). 

(3) After a bond transposition, the atoms move to the equilibrium position (geometric 
relaxation), i.e., to the position with minimal potential energy as represented by the 
interatomic potential. Thermal vibrations are neglected. 

(4) When a highly excited state is created via this initial randomization, an annealing 
process is simulated. Here, the allowed bond switches must satisfy the condition 

w -= exp(-AV/kBT) (1) 

where w is a random variable between zero and unity, taken at each bond switch, AV is the 
difference of potential energy between the atomic configurations before and after the bond 
transposition, k~ is the Boltzmann constant and T the simulated temperature of annealing. 

(5) Instead of the periodic boundary conditions used in [SI, in our case the atoms are 
fixed at the edge of the amorphous region in the positions of the ideal crystal structure. 
Therefore, bond switches and movements of atoms are allowed only in the central region 
of the amorphous sphere. This region is surrounded with a shell of atoms where only 
movements of the atoms are allowed, thus enabling a smooth distribution of stresses along 
the amorphous crystalline interface. At the very edge, as we have already mentioned, the 
atoms are completely rigid and fixed in the positions of a perfect lattice. While for the 
sillium case, with the use of periodic boundary conditions, a model containing 216 atoms 
was adequate, our model requires at least a few thousands of atoms in order to yield an 
amorphous structure. 

It is to be understood that in ILI-V compounds and their ternary alloys we have, in 
general, two or three different atoms participating in bond formations which are, as a 
consequence. partly ionic. This aspect must be accounted for by an appropriate choice of 
the interatomic potential, which also includes the determination of the effective charges 
associated with the atoms. We will address this problem in the next section. 

3. The interatomic potential 

The potential energy V of the system under consideration, corresponding to a non- 
equilibrium configuration (U,$, uzr , .  . .) = [U] of the atoms, is usually written as 
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The radius vector RI, of the s th  atom in the ith unit cell is assumed to have the form 

Rj, = RI;) + uts (3) 

where uis represents the displacement of the atom from its equilibrium position in 
the crystal lattice. All aV/aui, vanish, since they are evaluated at the equilibrium position 
Rj:). The coefficients 

azviau!:lau$ I ~ . ~ ~ ~ . ~ . ~ ,  
are the atomic force constants. Many are related by symmetry, but there are a number (of 
the order of the number of atoms in the crystal) that are independent and they must be 
known, if one wishes to calculate AV = V((ZL')) - V([u")). using equation (2). We can 
determine some of the atomic force constants from the frequency measurements. However, 
a solid has many more force constants than frequencies, and thus no unique assignment of 
force constants can be obtained on the basis of frequency measurements alone [ I  I]. 

It is possible, in principle, to calculate aU the force constants from the theory of electronic 
structure. In covalent solids this proves to be extremely difficult in practice, even within the 
framework of the bondorbitalapproximation [ 121, which is especially suitable for the study 
of alloys and amorphous semiconductors [13]. The more practical alternative is to model 
interactions on the basis of theoretical ideas in order to reduce the number of independent 
force constants. Of the many force-constant models, perhaps the most useful description of 
the short-range forces in tetrahedrally coordinated solids is the so-called valence-forcelfield 
approach [14]. It is characteristic of all such models that the more constants one introduces, 
the more experimental constants one can fit. 

In elemental semiconductors, such as Si and Ge, the interatomic forces can be resolved, 
quite accurately, into bond-stretching and bond-bending forces [ 10,141. The equations of 
motion as written in terms of the bond-stretching force constant 01 and bond-bending force 
constant +'? can be then compared, in the long wavelength limit, with the equation of motion 
resulting from macroscopic elasticity theory. In the case of crystals with cubic symmetry 
there are three independent macroscopic elastic constants c l I ,  c12 and c e  which are thus 
related to ct and ,G. Using the experimental values for the elastic constants we can determine 
the magnitudes of ct and +'?. 

It is well known [ 15, 161 that the calculation of the elastic constants and their relation to 
atomic force constants is more demanding in the case of heteropolar semiconductors, such 
as GaAs and AlAs, for example, and their ternary alloys. In particular, one has to introduce 
explicitly the polarization of the crystal produced by the displacement and polarizability of 
the ion cores and the redistribution of the valence charge density. 

The relation between the elastic constants ell, C ~ Z  and CM and the bond-stretching force 
constant a and the bond-bending force constant p,  for the ZnS-type semiconductors, was 
derived by Martin [17]. He used the rigid point-ion approximation and a single effective 
charge Z*eo defined by the optic-mode splitting in the long-wavelength limit [IS]. We will 
use his results to determine the magnitude of ct and +'? for GaAs, AlAs and AI,Cal-,As 
from the known values of the elastic constants for these solids. 

Adopting the results of Keating [IO] and Martin [17], including the rigid point- 
ion approximation, we can write the interatomic potential corresponding to heteropolar 
tetrahedrally bonded crystalline semiconductors, containing a single amorphous zone, as 
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where the index 1 (i, s) runs over all the atoms, rli is the vector pointing from atom 1 
to its nearest neighbour i ,  no is the lattice constant and do = $108, is the equilibrium 
bond length. Z*eo will be assumed to be equal to the transversal effective charge e;eo 
117,181, CYM is the Madelung constant, and €0 and €1 are the permittivity of free space 
and the electronic dielectric constant, respectively. We should point out, however that in 
general a = a([, i) and 0 = P(1, i ,  j ) .  AV', is the change in the electrostatic potential 
due to the presence of the amorphous region embedded in the crystal lattice. To obtain an 
approximate expression for A V .  we make use of the following rather trivial observation. 
When an ionic charge Z*eo is displaced by U, the net effect is as though a charge -Z*eo 
has been placed at the undisplaced position of the ion and a fresh charge Z*eo has been 
created at the displaced position. The displacement, if it is not too large, is equivalent to 
the addition of a dipole moment with the moment Z'eou. It then follows that 

where F(Rjo')  is proportional to the Ewald expression for the Madelung constant written 
in the rapidly convergent form [15,16] 

and the function H(x)  is defined as 

G is a vector of the reciprocal lattice and E is a number of the order of unity, chosen in 
such a way as to lead to the rapid convergence of both sums in (6). qi = +Z*eo is the ionic 
charge at the site 1 = ( i ,  s )  in a perfect crystal lattice, while q; is the corresponding charge 
in a disordered lattice and is, in eneral, different from ql if 1 belongs to the amorphous 

Using the experimental results quoted in [17] and 1191 we calculated the parameters 

(0) - R' % zone ( I  E AZ). R;:) 5 1~~ 

appearing in (4) and (5). Their values are listed in table I for several m-V compounds. 
I ,  1. 
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Table 1. Panmeters of the Marrin polenlid of selected 111-V compounds [17,19]. on is the 
lattice comtmt, and & = io+& is the equilibrium bond length; e; is the transversal effective 
charge (in units of eo) and 61 is the electronic dielectric constat: n and p are the bond-stretching 
and bond-bending force mnsmts. respectively; and (IM is the Madelung constant. 

an n B eat a M e ~ 2 e ~ / 4 ~ < i c n &  
Compound (nm) e;2//el ( e V n m 9  (ev nm-?) (ev)  (ev)  

Si 0.5431 - 302.81 86.19 89.31 a.ao 
Ge 0.5658 - 241.65 7 1.07 77.35 0.00 
GaAs 0.5653 0.444 259.55 56.01 82.95 4.39 
A I ~ ~ . ~ s G % . I ~ A S  0.5660 0.51 1 269.91 54.53 86.47 5.05 
AlAs 0.5661 0.588 273.57 54.07 87.67 5.82 
GaP 0.5451 0.494 294.92 65.28 87.62 5.07 

To calculate the corresponding values for the ternary alloy AI,Gal-,As, we employed the 
so-called virtual-crysral approximation [ZO], where, for example 

OAI,G~,-.A~ = X ~ A I A ~  + (1 - x ) % a ~ S .  

This may not seem a very good approach to the problem at hand, however, we believe 
it is nevertheless a useful zero-order approximation, which simplifies the calculations 
considerably. Also, if we neglect the terms quadratic in the atomic displacements U,. 
(5) can be further simplified to yield: 

(7) 

where 4; = e;eoe:. c,' = & I ,  and the influence of antisite disorder at the higher-order 
neighbours has been neglected. K is a constant and is equal to 1.26. Using the results given 
in table I, one can see that the contribution of the Coulomb interactions to the total potential 
V is rather small (- 6%) in comparison to the short-range Keating potential. It may thus 
appear that the specific choice of the effective charge Z'eo = e;eo is not very crucial. 

It is clear that in solids there are essential ambiguities in associating effective charges 
with ions. Fortunately there are experimentally distinguishable configurations of the lattice 
that lead to the natural definitions of the effective charges associated with each type of lattice 
distortion (piezoelectric effect, the splitting of longitudinal and transverse optical modes of 
lattice vibrations in the zincblende structure). Rather than going into a detailed discussion of 
the proper definition of the effective charge corresponding to each case [21-241, we follow 
Martin [I71 and use a single effective charge given by 

where € 1  is the electronic dielectric constant, is the lattice constant, p is the reduced 
mass of the two a t o m  in a primitive unit cell and wm and WO are the long-wavelength 
longitudinal and transverse optical mode frequencies, respectively. The numerical values of 
eT2/c1 are given in table 1. 
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Table 2. Panmeters of a thermal spike. T, is the melting temperature, A is the thermal 
conductivity, BD is the Debye temperature. Ed is the displacement energy and ro is the atomic 
vibration period. The parameters r,. r, and n, are calculated for a spike with E = 5 keV 
and are characteristic values of thermakpike melting time, radius and the number of atoms, 
respectively, as defined in section 4. 

A (W mK-’) 44.05 19.61 
QD (K) 370 432 
E d  (eV) 17 17 
fO-(Ps) 0,130 0.111 
r, (PSI 0.157 0.379 
rm (nm) 2.12 1.98 
n, (atoms) 1778 1439 

4. The parameters of randomization and relaxation calculation 

Due to computer limitations a 5 keV displacement cascade was simulated. At the initial 
randomization, the temperature T of the cost function (1) is, as in the sillium model, quite 
arbitrary, and the initial temperature was chosen such that ksT = 20 eV. This energy is 
comparable with both the displacement energy in G A S ,  which is 17 eV [25], and the initial 
core energy of a thermal spike (table 3). Besides, an energy equal to 20 eV enables up to 
three different bond transpositions from the initial, perfect crystal structure. In the process of 
the initial randomization, bond transpositions were allowed inside a sphere which contained 
nmS = (5000 eV)/(20 eV) = 250 atoms. On the average, one bond transposition attempt 
per atom was made and each such attempt had to satisfy the following criteria. 

Before the transposition the distance between the atoms of both bonds was smaller 
than 0.8 of the lattice constant m, i.e., smaller than 1.85 of the equilibrium interatomic 
distance &-this is a slightly larger distance than the distance between the next-nearest 
neighbours in a perfect diamond structure; if the maximal allowed distance were smaller 
than 0.71~~0,  the starting randomization would not be possible. 

Bond transposition is topologically possible, i.e., after the transposition no double 
bonds were formed. 

The transpositions where three- or fourfold bond rings would be formed were not 
allowed. 

This structure, formed in the transposition volume, was subsequently relaxed; in addition 
to the atoms in the randomized sphere, relaxation was also allowed in a shell around this 
sphere, and this shell contained at least two atomic layers. Such a shell is sufficiently thick 
that after the relaxation the stresses on the outer edge of the ‘relaxed’ shell are negligible. 

For the simulation of annealing the thermal-spike model [26] was used. This model 
is based on the assumption that the energy transferred to the lattice by the incident ion is 
localized in a very small volume. Consequently the high energy concentration causes local 
melting. In the melted region, the atomic migration and recombination is very intensive, 
followed by a fast cool down and ‘freezing’ of the atoms in a disordered structure. 

The practical validity of this model depends on volume and time to which the 
macroscopic concepts of heat can be applied. In insulators and semiconductors these limits 
are determined by the frequencies of atomic vibrations (lO’*-lO” s-l) and the mean free 
path of phonons (1-5 nm at room temperature). Consequently, it would be unsafe to apply 
the macroscopic concept of heat for times shorter than lo-’’ s and volumes with linear 
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dimensions much less than 5 nm. However, it has been shown [27], using the molecular- 
dynamics method that a process similar to melting does take place in the displacement 
spike, and that this process is responsible for the intensive mixing of the atoms. Having 
this in mind, one can therefore justify the use of idealized thermal-spike equations to obtain 
an estimate for the order of magnitude of the temperature and the size of the spike. 

Approximating the initial energy distribution by ES(T), where S ( T )  is the Dirac delta 
function, the solution of the diffusion equation yields the following temperature at time t :  

E exp(-rZ/4Dt) 
pcp (4nDt))12 ‘ 

T = -  

Here D = A/pc, is the diffusion coefficient, h the heat conductivity, p the density, cp the 
heat capacity of the material and r the distance from the origin. 

The time a t  which the temperature reaches its maximal value at the radius r can be 
obtained by differentiating equation (9) with respect to t .  The result is 

t ,  = r’j6D. (10) 

The radius of the sphere within which the temperature exceeds a particular temperature T, 
is therefore 

where e is the basis of natural logarithms. Now, the equation (9) can be written in a 
shortened form as 

where we have introduced new. ‘reduced‘ variables: 

x = r / r m  

7 = t / tm = t / ( r i / 6 D )  

The ‘spike core’ is defined as the region with radius ro = a, where the temperature 
is decreasing with time. Simple calculation shows that the average temperature of the spike 
core is 

and after numerical integration one obtains 

(‘T)c = 1.973/r3I2. 
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In the simulation of the annealing process, (17) and (18) were used for the determination 
of the transposition volume and annealing temperature, respectively. The radius of the spike 
core at time t is therefore equal to 

rmn, = (19) 

and the transposition volume is equal to 

where n, is the maximal number of 'melted' atoms. The average temperature in the 
transposition volume can be obtained from equation (18) to be 

Table 2 gives the values of the material parameters necessary to calculate r,,, and tm. 

vibrations 
The time scale of annealing steps was determined by to, the typical period of atomic 

to = h/ks@D (22) 

where h is Planck's constant and OD the Debye temperature. 
At a given temperature T ,  the probability for a successful bond transposition with 

A E  2 kgT is equal to e-]. Therefore, if the number of attempts in a selected time 
interval is enyms, then, on average every atom would have a chance for a successful bond 
transposition with a potential difference of at least kBT. Instead of this, the number of time 
intervals was multiplied by e, and the number of attempts was fixed at the value Vatom. 
The time intervals, which were used to calculate the temperature T,,, and radius rWmr of 
the annealing steps, were therefore determined by the equation 

t(k) = (k/e)b (k = 1 , 2 , 3 , ,  . .). (23) 

Table 3 gives the calculated values of the temperature and volume of the sphere at these 
time intervals for GaAs and Alo.g5Gao,lsAs; due to a lower thermal conductivity and higher 
melting point, the cooling time (and the number of annealing steps) in Alo,g5Gaa,l5As is 
appreciably higher than that in GaAs. 

When the spike core temperature drops below - 0.7 eV, the transposition volume was 
not expanded further in accordance with equation (ZO), but the former value was kept 
constant. This restriction was justified for the following reason: energetically the lowest 
transposition from the perfect crystal structure increases the potential energy by 7.7 eV in 
GaAs, and by 8.3 eV in Alo.gsG~.,5As. The probability for a successful transposition from 
a perfect crystal structure is therefore - exp(-8/0.7) 5 IO-' and with falling temperature 
this value decreases exponentially; the perfect structure is, of course, only in the outer, 
expanded part of the sphere and hence, at keT < 0.7 eV, the transpositions are practically 
impossible; this temperature, however, still enables transpositions in the central part of 
the sphere, since it is already in a disordered state and transpositions with smaller energy 
differences are possible. On the other hand, such a restriction has enabled rationalization 
in terms of computer time, and, in turn, made it possible to simulate a thermal spike with 
larger energy. 
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After the spike core temperature had fallen below the melting point, the room- 
temperature value for the thermal conductivity was used and the cooling process became 
several times faster than before. Since ksT is very small in comparison with the typical 
transposition energy, the temperature was assumed constant, at 300 K. The number of 
bond-switch attempts per atom was determined from the time required for cooling from 
the melting point to 30 K. Another 300 iterations per atom followed at 30 K, at this 
temperature, practically only transpositions with a negative energy difference are possible 
and 300 iterations were made to ensure that all such transpositions had a fair chance 
(usually the last transposition was around the 100th iteration). Table 3 shows the simulation 
parameters at given iteration steps. 

Table 3. The input for the Simulation 

I 3.42 
2 1.21 
3 0.66 
4 0.43 
5 0.31 
6 0.23 
7 0.18 
8 0.15 
9 

10 
I 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

296 19.90 
7.04 
3.83 
2.49 
I .78 
1.35 
I .07 
0.88 
0.74 
0.63 
0.55 
0.48 
0.42 
0.38 
0.34 
0.31 
0.28 
0.26 
0.24 
0.22 
0.21 
0.19 
0.18 
0.17 

51 
144 
265 
408 
570 
149 
944 

1153 
I376 
1455 
1455 
1455 
1455 
1455 
1455 
1455 
1455 
1455 
1455 
I455 
1455 
I455 
1455 
1455 

I 47 
337 
553 
793 

1051 
1326 
1617 
1923 
2242 
2353 
2353 
2353 
2353 
2353 
2353 
2353 
2353 
2353 
2353 
2353 
2353 
2353 
2353 
2353 

Number of 
iterations 

- - - 20 0.03 1455 2353 
57 - - - 0.03 1455 2353 

300 0.003 1455 2353 0.003 1455 2353 

5. The results of simulation and discussion 

The simulation was performed on the VAXNMS computers WAX 8650, pVAX-4000, 
/“AX-III). Since a probabilistic method is involved, several (i.e., six for GaAs and six for 
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A ~ , ~ ~ G % . J ~ A s )  simulations were carried out with the same input data for each material. 
After the simulation was completed, each resulting structure was analysed. 

As is well known, the absence of a sharp sfmcture in the scattering pattem of an 
incident monoenergetic collimated beam of x-rays or particles is the principal experimental 
evidence that the material is amorphous. The simplest comparison between the models and 
the experiment is obtained with the help of the RDF, which we define as in IS], and which 
is denoted by 

~. ~ Simulation of amorphimtion in 111-V compounds 

g(r)  = 4 n r Z p ( r ) .  

p ( r )  is the local density of atoms at a distance r from a particular atom averaged with 
the respect to the choice of this atom. However, for quantitative comparisons the closely 
related correlation function 

is usually used. For example, the correlation function corresponding to a perfect diamond 
cubic structure shows a number of sharp peaks [SI. With increasing randomization the 
correlation function becomes more and more featureless, apart from the first and second 
peaks which are characteristic of tetrahedral bonding. The most notable difference between 
the correlation functions for crystalline and amorphous material is in the absence of the 
third peak, which is prominent in the crystalline phase. 

An example of the structure resulting from our model of randomization is shown in 
figure 1, representing a cross-section through the (1 11) plane. The corresponding correlation 
functions, where an average over the first 200 central atoms was taken into account, are 
shown in figure 2. In all simulations, one bond transposition attempt per atom was made on 
the average inside the transposition volume. The number of successful bond transpositions 
per atom is denoted by c. It ranged from 0.39 to 0.46 for GaAs and from 0.32 to 0.42 
for Alo.~~Gq,l5As. In  all cases the lowest and highest c values yielded crystalline and 
amorphous structure, respectively, upon annealing. However, at intermediate values of 
c there was no observable correlation between the c values and the resulting structure. 
On average, we may conclude that the 5 keV cascade produces amorphous structure in 
approximately half of the simulations (curve b in figure 2), while in the other half of the 
simulations the correlation function corresponding to the resulting structure (curve a in 
figure 2) retains a fair amount of structure characteristic of the crystalline state. Similar 
conclusions are also obtained from the bond-length and bond-angle distributions shown 
in figures 3 and 4, respectively. It is also seen from table 4 that the RMS bond-length 
and angular deviations from their mean values (which are essentially identical to the values 
corresponding to perfect tetrahedral bonding) are 5.7% and 20%, respectively. These values 
are roughly factors of three and two larger, respectively, than the corresponding experimental 
values obtained for amorphous Ge [28,29]. 

Table 4. Avenge value and RMS deviation of bond lengths and bond angles. 

Bond length (00) Angle behveen bonds 

Perfect crystal 0.4330 109'28' 
'Crystal +defects' 0.4348 f 4.6% 109'16' * 16% 
'Amorphous' 0.4332 j, 5.7% 108-24' f 20% 
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Figure 1. (11 I )  plane: (a) a perfect zincblende lattice. (b) a deformed. 'amorphized' structure. 

6 

Figure 2. RDF for two simulations of GaAs and &.ssGaa.~As: (a) the presence of higher-order- 
neighbour peaks suggests a crystalline structure with some localized defects; (b) non-existence 
of higher-order-neighbour peaks suggests an amorphous stntcture, 

As we have already mentioned, the contribution of the Coulomb pail to the short-range 
potential is, in the approximation considered (equation (7)), around 6%. Consequently, the 
results of the simulation may be also compared with the corresponding results for Si and 
Ge obtained in 181 and applicable to typeIV semiconductors. It has been shown by Wooten 
and Weak  [8] that the initial randomization characterized by c 5 0.3 corresponds, apart 
from the first- and second-neighbour peaks, to a completely featureless correlation function, 
yet the subsequent annealing process leads back to the original diamond structure. In our 
case we have the initial randomization characterized by 0.32 6 c < 0.46, and the annealing 
process, governed by the thermal-spike model, almost restores the original crystalline state 
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Figure 3. The distribution of bond lengths for two simulations: (a) structure with some 
crystalline order remaining: (b) amorphized smcture. 

Figure 4. The dishibution of bond angles for two simulations: (a) structure with some cnstalline 
order remaining: (b) amorphized svuchlre. 

( c  e 0.1)  in half of the cases, while in the other cases we obtain a random structure. At the 
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same time we can see from figure 2 and table 4 that the annealing process is less effective in 
reducing the bond and angular distortions when dealing with local amorphization compared 
to an infinite amorphous structure. In spite of this deficiency of the annealing process, which 
is also present to a lesser degree in the sillium model, we  may conclude, in view of the above 
comparison, that a 5 keV displacement cascade is probably too small to generate sufficient 
initial randomization. This conclusion is strengthened even further when one considers the 
dependence of the structure factor S(G) on the degree of initial randomization [30J. 

The results of the simulations have also shown that the Martin potential employed in 
this calculation is far too simple to account for the differences in behaviour of GaAs and 
Alo.s5G%.l5As under irradiation. In this context we suggest two immediate modifications, 
which should improve the model. First of all, the virtual-crystal approximation is probably 
not adequate to bring out the difference between the behaviour of GaAs and A1,Gal-,As 
under irradiation. In this approximation the parameters corresponding to GaAs and 
Alo.s5Gaa.l5As differ only by about 10%. In future calculations one should distinguish 
between @G~-&, ~ A I - A ~ ,  B A M - A ~ ,  B G ~ - A ~ - G ~ ,  BA.-AI-A~. BAI-A~-AI and BAI-A~-G~, the 
values of which could perhaps be estimated with the use of bond-orbital approximation 
[ 12,131. Moreover the approximation (7) should be dropped and the expression ( 5 )  should 
be used for the calculation of Coulombic interaction. 

On a more ambitious note, one could also dispose of the rigid-ion model itself. In 
the past various models have been proposed. Especially detailed analysis, also including 
III-V compounds, has been performed by Kunc and coworkers [31-331. Their results 
can be incorporated into our calculation on the basis of the following observation. The 
displacements of the ions destroy the high symmetry of the corresponding lattice sites 
and lead to the appearance of the polarization of the crystal. We account for this by 
associating with each lattice site (this may prove ambiguous especially in the case of In-V 
compounds with partly ionic character of covalent bonds) a charge distribution characterized 
by multipole moments. Following Kunc el nl [32,33] we write the @-component of the 
dipole moment at the lattice site 1 (i, s) as 

g; = f g  is the static ionic charge determined by fitting to the piezoelectric constant, 
m$@’ are called mechanical polarizabilities or deformabilities, and a$” are the electronic 
polarizabilities representing the response of the electronic charge to the effective electric 
field. This field may be calculated for a given lattice site by the application of Ewald’s 
method as described in [16]. However, in the case of a single amorphous zone, where the 
ionic displacements are limited to a localized region, we can solve the resulting equation 
by iteration and write in the first approximation 

where I belongs, in general, to an arbitrary lattice site. Inserting (25)  in (24) we obtain a 
reasonable approximation for the dipole moment associated with the lattice site I which can 
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be used then in (5) instead of q;ult. The transverse effective charge e;eo can be expressed in 
terms of the high-frequency dielechic constant €1 and Szigeti effective charge q*. which, in 
tum, can be written in terms of the static ionic charge q and the mechanical polarizabilities 
1321. 

Extending the rigid-ion model in the manner indicated above inevitably brings new 
parameters into the model. Such parameters are usually determined by fitting to the 
available experimental data Even if sufficient experimental data exist, such a procedure 
often proves very ambiguous and it is difficult to assign a clear physical meaning to all the 
parameters. This point has been emphasized very clearly already in [32] where it also has 
been demonstrated that when attempting to establish more sophisticated models. the results 
of simpler models may provide a very useful guide. 
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