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Abstract. The formation of amorphous zones, induced by heavy-ion irradiation of II-V
compounds and their ternary alloys, was studied using a computer simaulation. For this purpose,
the so-called sillium todel, which has been used to model amorphous Si and Ge, was modified
and subsequently employed in II-V compounds. The modification had to take into account
different boundary conditions and different interatomic potentials in order to account for the
partly icnic character of the bonds in these solids. For the Coulomb part of the potential we
assumed rigid point ions with charges equal to the transversal effective charge. The results
of the simulation show that the model is capable of producing a locally disordered structure
surrounded by a perfect crystal lattice, provided that the energy of the initial displacement
cascade is sufficiently high. [f is also shown that the virtual crystal approximation is not
adequate to confirm the experimentally observed differences in amorphization between GaAs

and Alyg5Gag. sAs.

1. Introduction

Radiation damage in semiconductors results primarily in amorphization, which is a
consequence of the highly directional character of covalent bonds. There are two distinct
mechanisms responsible for the onset of amorphization. One prevails at light-ion irradtations
where the concentration of point defects and the energy density in an individual displacement
cascade are not high enough for a crystalline to amorphous (c-a) phase transition. With
increasing ion dose, however, the overall concentration of point defects in the irradiated
region can reach the point of the c—a transition. This is known as the point-defect build-up
mechanism. On the other hand, heavy ions (with their mass comparable to the mass of
atoms in the solid) produce highly concentrated displacement cascades and the material is
amorphized locally, around the path of individual ions. The result is creation of a small (~
3 nm in diameter) amorphous zone. This mechanism is called direct-impact amorphization.
The ternary alloy Al,Ga;_;As is, together with GaAs, very important for the production
of heterostructures. In experimental research into the response of both materials to
irradiation with heavy ions we have found [1, 2] that Al,Ga,_,As is much more resistant to
amorphization than GaAs, and that this resistance increases with increased Al content. In
particular, it has been shown that under all conditions of irradiation there was no evidence
of direct-impact amorphjzation in an Al;Ga;_.As alloy with high Al content (x = 85%).
This peculiar result has motivated the present study.
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1t is already clear that the increased resistivity of Al,Ga;_,As, with high Al content,
to amorpliization cannot be attributed to a lower energy densityt of the collision cascade
in AlpgsGag,1sAs than in GaAs (Al is a significantly lighter atom than Ga and the energy
transfer during a single collision is smaller) for two reasons.

(1) Kr* ions produce direct-impact amorphization in GaAs [4,5)] and the cascade energy
density for this case can be compared to the energy density of cascades of Xe™ ions in
AlpgsGag sAs. Xe' ions are heavier then Kr¥ ions, and therefore slower at the same
kinetic energy. Hence, they have a shorter range and the density of energy deposition is
relatively higher.

(2) Direct-impact amorphization is also observed in 50 keV Kx™* irradiation of GaP [6],
which has atomic masses very similar to those of AlAs.

Another possible explanation for the increased resistivity to amorphization would be
that direct-impact amorphization in Al,Ga;_, As does occur, but the amorphous zones are
subsequently rapidly recrystallized. Since no direct-impact amorphization has been cbserved
even at 30 X, this explanation also seems to be ruled out. We are thus led to conclude that
the structure and/or stability of the amorphous state in Al,Ga,_,As is significantly different
from a similar condition in GaAs (and other ‘common’ II-V semiconductors).

To investigate the above hypothesis we have studied, using computer simufation, the
structure of individual amorphous zones in II-V semiconductors. Amorphization is a
complex phenomenon and is still far from being well understood. Consequently, we shall
assume, in what follows, that the structure of the amorphous zones is not just a crystalline
state containing a high density of vacancies, divacancies, interstitials, diinterstitials ete, but is
pictured as a tetrahedral glass derived from the zincblende structure by topological disorder.
Therefore we expect fairly sharp interfaces in a partialiy amorphous material separating
regions that have relaxed to an amorphous phase from those that have not. A model of this
kind, which has gained wide acceptance, is the so-called continuous-random-network mode!
[7]. In this model every atom is almost perfectly tetrahedrally coordinated with its nearest
neighbours. Distortions of bond lengths and bond angles from the values in the crystalline
phase are of the order of 10%. Although the structure of the amorphous zones lacks the
long-range crystalline order, the bond orbitals may still be visualized as directed hybridized
orbitals of the familiar sp* type. This circumstance will be accounted for by an appropriate
choice of the interatomic potential corresponding to short-range forces.

2. The sillivm medel and its application to modelling of amorphous zones

The algorithm for modelling of amorphization was adopted from the so-called sillium
model [8], which is based on bond switching between two pairs of suitably chosen atoms
(preserving the fourfold coordination), simulation of thermal relaxation using the Metropolis
algorithm {9], and the use of the Keating potential [10] for the calculation of inter-atomic
forces. In its original formulation the sillium model was used for construction of an infinite
amofphous structure of a tetrahedrally bonded monoatomic solid, such as Si or Ge. The
resulting radial distribution {RDF) compared favourably with the experimentally determined
RDF of amorphous Ge, provided that the annealing process is performed carefully [8].

In spite of its deficiencies and limitations, in particular the use of a rather simple
semiempirical interatomic potential, the sillium model nevertheless offers a useful method

t It is a very plausible assumption that a critical energy density must be reached before the material is rendered
amorphous [3].
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for constructing and categorizing realistic random networks. It is also true that its application
to modelling of amorphous zones with their concomitant amorphous-crystal interfaces will
perhaps further amplify the known deficiencies of the model. Considering the experimental
results discussed above, however, it may still be of some interest to examine the structure
of the resulting amorphous zones.

The actual rules determining the model are essentially those of Wooten and Weaire [8]
and we list them for the sake of completeness.

(1) Every atom is bonded to four neighbours.

(2) In the process of randomization {or relaxation) the switching of bonds takes place,
i.e. the bonds between two pairs of atoms are broken and a new pair of bonds is subsequently
formed, between the same four atoms, but with the different atom pairs in each bond (‘bond
transposition’).

(3) After a bond transposition, the atoms move to the equilibrium position (geometric
relaxation), i.e., to the position with minimal potential energy as represented by the
interatomic potential. Thermal vibrations are neglected.

(4) When a highly excited state is created via this initial randomization, an annealing
process 1s simulated. Here, the allowed bond switches must satisfy the condition

w < exp{—AV/kgT) (1

where w is a random variable between zero and unity, taken at each bond switch, AV 1s the
difference of potential energy between the atomic configurations before and after the bond
transposition, £g is the Boltzmann constant and 7 the simulated temperature of annealing.

(5) Instead of the periodic boundary conditions used in [8], in our case the atoms are
fixed at the edge of the amorphous region in the positions of the ideal crystal structure.
Therefore, bond switches and movements of atoms are allowed only in the central region
of the amorphous sphere. This region is surrounded with a shell of atoms where only
movements of the atoms are allowed, thus enabling a smooth distribution of stresses along
the amorphous crystalline interface. At the very edge, as we have already mentioned, the
atoms are completely rigid and fixed in the positions of a perfect lattice. While for the
sillinm case, with the use of periodic boundary conditions, a model containing 216 atoms
was adequate, our model requires at least a few thousands of atoms in order to yxeld an
amorphous structure,

It is to be understood that m HI-V compounds and their ternary alloys we have, in
general, two or three different atoms participating in bond formations which are, as a
consequence, partly ionic. This aspect must be accounted for by an appropriate choice of
the interatomic potential, which also includes the determination of the effective charges
agsociated with the atoms. We will address this problem in the next section.

3. The interatomic potential

The potential energy V of the system under consideration, corresponding to a non-
equilibrium configuration {w;, Uy, ...} = {u} of the atoms, is usuvally written as

2
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The radius vector R;; of the sth atom in the ith unit cell is assumed to have the form
Ry = R + u;s 3)

where w;; represents the displacement of the atom from its equilibrium position RY in
the crystal lattice. All 2V /8w, vanish, since they are evaluated at the equilibrium position
Rf.f). The coefficients

82V /3 8ul) lu gty

are the atomic force constants. Many are related by symmetry, but there are a number (of
the order of the number of atoms in the crystal) that are independent and they must be
known, if one wishes to calculate AV = V{{u'}} — V({u"}]), using equation (2). We can
determine some of the atomic force constants from the frequency measurements. However,
a solid has many more force constants than frequencies, and thus no unique assignment of
force constants can be obtained on the basis of frequency measurements alone [11].

It is possible, in principle, to calculate ali the force constants from the theory of electronic
structure. In covalent solids this proves to be extremely difficult in practice, even within the
framework of the bond orbital approximation [12], which is especially suitable for the study
of alloys and amorphous semiconducters [13]. The more practical alternative is to model
interactions on the basis of theoretical ideas in order to reduce the number of independent
force constants. Of the many force-constant models, perhaps the most useful description of
the short-range forces in tetrahedrally coordinated solids is the so-called valence-force-field
approach [14]. It is characteristic of all such models that the more constants one introduces,
the more experimental constants one can fit.

In elemental semiconductors, such as Si and Ge, the interatomic forces can be resolved,
quite accurately, into bond-stretching and bond-bending forces [10, 14]1. The equations of
motion as written in terms of the bond-stretching force constant o and bond-bending force
constant B can be then compared, in the long wavelength limit, with the equation of motion
resulting from macroscopic elasticity theory. In the case of crystals with cubic symmetry
there are three independent macroscopic elastic constants ¢, iz and cay4 which are thus
related to o and 8. Using the experimental values for the elastic constants we can determine
the magnitudes of @ and 8.

It is wetl known [15, 16] that the calculation of the elastic constants and their refation to
atomic force constants is more demanding in the case of heteropolar semiconductors, such
as GaAs and AlAs, for example, and their ternary alloys. In particular, one has to introduce
explicitly the polarization of the crystal produced by the displacement and polarizability of
the ion cores and the redistribution of the valence charge density.

The relation between the elastic constants ¢y, ¢12 and c44 and the bond-stretching force
constant ¢ and the bond-bending force constant 8, for the ZnS-type semiconductors, was
derived by Martin [17]. He used the rigid point-ion approximation and a single effective
charge Z*ep defined by the optic-mode splitting in the long-wavelength limit [18]. We will
use his results to determine the magnitude of o« and B for GaAs, AlAs and Al,Ga;_,As
from the known values of the elastic constants for these solids.

Adopting the results of Keating [10] and Martin [17], including the rigid point-
ion approximation, we can write the interatomic potential corresponding to heteropolar
tetrahedrally bonded crystalline semiconductors, containing a single amorphous zone, as

] 20 o 4 A
V=3 [“E D Uik =)+ s > (r,,— T+ '3-45)
T L% o ay {jmi
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where the index ! = (i, s) runs over all the atoms, 7 is the vector pointing from atom !
to its nearest neighbour {, ap is the lattice constant and dy = ﬁagﬁ, is the equilibrium
bond length. Z*eg will be assumed to be equal to the transversal effective charge ejep
[17,18], am is the Madelung constant, and €; and ¢; are the permittivity of free space
and the electronic dielectric constant, respectively. We should point out, however that in
general ¢ = a(l,{) and B = B(l,i, j). AVaz is the change in the electrostatic potential
due to the presence of the amorphous region embedded in the crystal lattice. To obtain an
approximate expression for AVaz we make use of the following rather trivial cbservation.
When an ionic charge Z*e; is displaced by wu, the net effect is as though a charge —Z*¢g
has been placed at the undisplaced position of the ion and a fresh charge Z*¢y has been
created at the displaced position. The displacement, if it is not too large, is equivalent to
the addition of a dipole moment with the moment Z*epu. It then follows that

AVaz = —% —i Z (q[ - 1) - Z (%) (uy - R‘m))F(R( })

Mdmercodo feAz NI leAz
41 ((ch — a){gp — ar)
0
LleAZ 4775160 Rz(p)
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- RYY uy - Bf)
+ gi(g) — ar)— “(0)3 — g {q; ~ q:)—ﬁ
4rreleoRH. dmereo Ry
I I; 2
+ 2 (R - wp — 30w - R -Rfﬁ’)]) )
4?TE]E()R”.'

where F (R}O)) is proportional to the Ewald expression for the Madelung constant written
in the rapidly convergent form [15, 16]

0y _
PR = 12352.5 p Zq“ ”'GZ#:U
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and the function H(x) is defined as
1 (=]
H{x) = %; j; ds exp(—s?).

(= is a vector of the reciprocal lattice and E is a number of the order of unity, chosen in
such a way as to lead to the rapid convergence of both sums in (6). ¢; = =Z*ey is the ionic
charge at the site { = (i, 5) in a perfect crystal lattice, while g; is the corresponding charge
in a disordered lattice and is, in general different from g; if { belongs to the amorphous
zone (! € AZ). RY = RV -

Using the experimental results quoted in [17] and [19] we calculated the parameters
appearing in (4) and (5). Their values are listed in table 1 for several III-V compounds.
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Table 1. Parameters of the Martin potential of selected III-V compounds [17,19]. ap is the
lattice constant, and dp = $ap+/3 is the equilibrium bond length; ¥ is the transversal effective
charge (in units of ep) and ¢ is the electronic dielectric constant; & and 8 are the bond-stretching
and bond-bending force constants, respectively; and ay is the Madelung constant.

ao o B wal ameblel/an e ody
Compound (nm) e-‘}z /e eV nm~?) eV nm™ (V) V)
Si £.5431 — 3G2.81 86.19 39.31 0.00
Ge 0.5658 — 241.65 71.07 7135 0.00
Gahs 0.5653 0.444 259.55 56.01 82,95 439
Alo.3sGap, 15 As 0.5660 0.511 269.91 54.53 86.47 5.05
AlAs 0.5661 0.588 273.57 54.07 87.67 5.82
GaP 0.5451 0.494 294.92 65.28 87.62 5.07

To calculate the corresponding values for the ternary alloy Al Ga)_,As, we employed the
so-called virtual-crystal approximation [20], where, for example

OAL G As = Xalas T (1 — X)Gans.

This may not seem a very good approach co the problem at hand, however, we believe
it is nevertheless a useful zero-order approximation, which simplifies the calculations
considerably, Also, if we neglect the terms quadratic in the atomic displacements .
(5) can be further simplified to yield:

Lk LATRN OF 1 z
SLE  alE S R CE
1 0

i=1 1 j>i
2

4 Fomer *‘-’0/4’“—" S [——(1 +EE) -1+ x&[éﬂ-’)(% - -@)]}
0

ozao = 4

(7

where ¢/ = ejeof], & = k1, and the influence of antisite disorder at the higher-order
neighbours has been neglected, « is a constant and is equal to 1.26. Using the results given
in table 1, one can see that the contribution of the Coulomb interactions to the total potential
V is rather small (~ 6%) in comparison to the short-range Keating potential. It may thus
appear that the specific choice of the effective charge Z*egp = eep is not very crucial,

It is clear that in solids there are essential ambiguities in associating effective charges
with ions. Fortunately there are experimentally distinguishable configurations of the lattice
that lead to the natural definitions of the effective charges associated with each type of lattice
distortion (piezoelectric effect, the splitting of longitudinal and transverse optical modes of
lattice vibrations in the zincblende structure). Rather than going into a detailed discussion of
the proper definition of the effective charge corresponding to each case {21-24], we follow
Martin [17] and use a single effective charge given by

Z*ep)? = (e}en)® = Luadeelndy — who) 8)

where €, is the electronic dielectric constant, zp is the lattice constant, i is the reduced
mass of the two atoms in a primitive unit cell and w o and wro are the long-wavelength
longitudinal and transverse optical mode frequencies, respectively. The numerical values of
e4? /ey are given in table 1.
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Table 2. Parameters of a thermal spike. T, is the melting temperaturs, A is the thermal
conductivity, ©p is the Debye temperature, £4 is the displacement energy and ry is the atomic
vibration period. The parameters Iy, rm 2nd ny, are calculated for a spike with E = 5 keV
and are characteristic values of thermal-spike melting time, radius and the rumber of atoms,
respectively, as defined in section 4.

GaAs AlggsGap 1548

T (K} 1511 1866
AWmK™D 4405 19.61
©p (K) 370 432
Eyq (&V) 17 17

1y {ps) 0.130 0.l11
fim {ps) 0.157 0.379
rm (um} 2.12 1.98
7y (atoms) 1778 1439

4. The parameters of randomization and relaxation caleulation

Due to computer limitations a 5 keV displacement cascade was simulated. At the initial
randomization, the temperature T of the cost function (1) is, as in the sillium model, quite
arbitrary, and the initial temperature was chosen such that kg7 = 20 eV. This energy is
comparable with both the displacement energy in GaAs, which is 17 eV [25], and the initial
core energy of a thermal spike (table 3). Besides, an energy equal to 20 eV enables up to
three different bond transpositions from the initial, perfect crystal structure. In the process of
the initial randomization, bond transpositions were allowed inside a sphere which contained
Aans = (5000 eV)/(20 eV) = 250 atoms. On the average, one bond transposition attempt
per atom was made and each such attempt had to satisfy the following criteria.

e Before the transposition the distance between the atoms of both bonds was smaller
than 0.8 of the lattice constant ag, i.e., smaller than 1.85 of the equilibrium interatomic
distance dg—this is a slightly larger distance than the distance between the next-nearest
neighbours in a perfect diamond structure; if the maximal allowed distance were smaller
than 0.71ag, the starting randomizaticn would not be possible.

e Bond transposition is topologically possible, i.e., after the transposition no double
bonds were formed.

o The transpositions where three- or fourfold bond rings would be formed were not
allowed.

This structure, formed in the transposition volume, was subsequently relaxed; in addition
to the atoms in the randomized sphere, relaxation was also allowed in a shell around this
sphere, and this shell contained at least two atomic layers. Such a shell is sufficiently thick
that after the relaxation the stresses on the outer edge of the ‘relaxed’ shell are negligible.

For the simulation of annealing the thermal-spike model [26] was used. This model
is based on the assumption that the energy transferred to the lattice by the incident ion is
localized in a very small volume. Consequently the high energy concentration causes local
melting. In the melted region, the atomic migration and recombination is very intensive,
followed by a fast cool down and ‘freezing’ of the atoms in a disordered structure.

The practical validity of this model depends on volume and time to which the
macroscopic concepts of heat can be applied. In insulators and semiconductors these limits
are determined by the frequencies of atomic vibrations (10'2-10' 5™} and the mean free
path of phonons (1-5 nm at room temperature}. Consegquently, it would be unsafe to apply
the macroscopic concept of heat for times shorter than 10~'2 s and volumes with linear
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dimensions much less than 5 nm. However, it has been shown {27], using the molecuiar-
dynamics method that a process similar to melting does take place in the displacement
spike, and that this process is responsible for the intensive mixing of the atoms., Having
this in mind, one can therefore justify the use of idealized thermal-spike equations to obtain
an estimate for the order of magnitude of the temperature and the size of the spike.
Approximating the initial energy distribution by E&(r), where 4(r) is the Dirac delta
function, the solution of the diffusion equaticn yields the following temperature at time ¢:

_ E exp(—r®/4Dz)

- pep  (4m D)2 ®)

Here D = 4/pc, is the diffusion coefficient, A the heat conductivity, o the density, ¢, the
heat capacity of the material and r the distance from the origin.

The time at which the temperature reaches its maximai value at the radius r can be
obtained by differentiating equation (9) with respect to ¢. The result is

t, =rt/6D. (10)

The radius of the sphere within which the temperature exceeds a particular temperature T,

is therefore
3 E \/
rmz\‘gf_:(pcPTm)_ ) b

where e is the basis of natural logarithms. Now, the equation (9) can be written in a
shortened form as

T =expl2(1 - x%/2))/<%* (12)

where we have introduced new, ‘reduced’ variables:

T=T/Tn (13)
x=rlry (14
T =t/tn =1/(r2/6D). (15)

The ‘spike core’ is defined as the region with radius ro = /6D, where the temperature
is decreasing with time. Simple calcunlation shows that the average temperature of the spike
core is

X0 31 — x2
(T)c=i3 szdx

xg Jo T3/ (16)

Xp=+/T (17
and after numerical integration one obtains

(T)e = 1.973 /%2, (18)
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In the simulation of the annealing process, (17) and (18) were used for the determination
of the transposition volume and annealing temperature, respectively. The radius of the spike
core at time ¢ is therefore equal to

Frans = Fmn/2/tm (19)

and the transposition volume is equal to
Psans = Mea(t/ 1) /2 (20)

where np, is the maximal number of ‘melted’ atoms. The average temperature in the
transposition volume can be obtained from equation (18) to be

Tans = 2Tt 2211712, (1)

Table 2 gives the values of the material parameters necessary to calculate ry, and #,.
The time scale of annealing steps was determined by #, the typical period of atomic
vibrations

to=h/kp®p ' {22)

where # is Planck’s constant and @p the Debye temperature.

At a given temperature T, the probability for a successful bond transposition with
AE > kT is equal to e”!. Therefore, if the number of attempts in a selected time
interval is enyang, then, on average every atom would have a chance for a successful bond
transposition with a potential difference of at least kg 7. Instead of this, the number of time
intervals was multiplied by e, and the number of attempts was fixed at the value 1/atom.
The time intervals, which were used to calculate the temperature Tians and radius rygqs of
the annealing steps, were therefore determined by the equation

t{k) = (k/e)y (k=1,2,3,...). (23)

Table 3 gives the caiculated values of the temperature and volume of the sphere at these
time intervals for GaAs and AlggsGag 15As; due to a lower thermal conductivity and higher
melting point, the cooling time (and the number of annealing steps) in AlygsGag,15As is
appreciably higher than that in GaAs,

When the spike core temperature drops below ~ 0.7 eV, the transposition volume was
not expanded further in accordance with equation (20), but the former value -was kept
constant. This restriction was justified for the following reason: energetically the lowest
transposition from the perfect crystal structure increases the potential energy by 7.7 eV in
GaAs, and by 8.3 eV in AlggsGag 15As. The probability for a successful transposition from
a perfect crystal structure is therefore ~ exp(—8/0.7) =~ 1073 and with falling temperature
this value decreases exponentially; the perfect structure is, of course, only in the outer,
expanded part of the sphere and hence, at kT < 0.7 eV, the transpositions are practically
impossible; this temperature, however, still enables transpositions in the central part of
the sphere, since it is already in a disordered state and transpositions with smaller energy
differences are possible. On the other hand, such a restriction has enabled rationalization
in terms of computer time, and, in turn, made it possible to simulate a thermal spike with
larger energy.
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After the spike core temperature had fallen below the melting point, the room-
temperature value for the thermal conductivity was used and the cooling process became
several times faster than before. Since kgT is very small in comparison with the typical
transposition energy, the temperature was assumed constant, at 300 K. The number of
bond-switch attempts per atom was determined from the time required for cooling from
the melting point to 30 K. Another 300 iterations per atom followed at 30 K; at this
temperature, practically only transpositions with a negative energy difference are possible
and 300 iterations were made to ensure that all such transpositions had a fair chance
(usually the last transposition was around the 100th iteration). Table 3 shows the simulation
parameters at given iteration steps.

Table 3. The input for the sirulation.

GaAs AlngsGap,isAs
kp Teeans Pirans Aretay kB Tieans Rirans Azelax
k (eV) (atoms} {atoms) (eV) {atoms} (atoms)
| 342 296 608 19.90 51 147
2 1.21 839 1461 7.04 144 337
3 0.66 1435 2353 3.83 265 533
4 0.43 1455 2353 2,49 408 793
5 0.31 1455 2353 1.78 570 1051
6 0.23 1455 2353 1.35 749 1326
7 0.18 1455 2353 107 944 1617
3 0.15 1455 2353 0.88 1153 1623
b4 —_ —_ —_— 0.74 1376 2242
0] — — — 0.63 1455 2353
11 — —_— — 0.55 1455 2353
i2 — — —_ 0.48 1455 2353
13 — —_ —_ .42 1455 2353
14 —_ — —_ 0.38 1455 2353
15 —_ —_ — 0.34 1455 2353
16 — — — 0.31 1455 2353
17 _ —_ —_— 0.28 1455 2353
18 — — — 0.26 1455 2353
19 — — —_ 0.24 1455 2353
20 —_ — — 0.22 1455 2353
21 — _— — 0.21 1455 2353
22 — —_ — 0.19 1455 2353
23 — — —_ 0.18 1455 2353
24 — —_ — 0.17 1455 2353
Number of
iterations
20 0.03 1455 2353 —_ —_ —
57 — — — 0.03 1455 2353
300 0.003 1455 2353 0.003 1455 2353

5. The results of simulation and discussion

The simulation was performed on the VAX/VMS computers (VAX 8650, uwVAX-4000,
tVAX-TIN). Since a probabilistic methed is involved, several (i.e., six for GaAs and six for
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AlpssGagsAs) simulations were carried out with the same input data for each material.
After the simulation was completed, each resulting structure was analysed.

As is well known, the absence of a sharp structure in the scaitering pattern of an
incident monoenergetic collimated beam of x-rays or particles is the principal experimental
evidence that the material is amorphous. The simplest comparison between the models and
the experiment is obtained with the help of the RDF, which we define as in [8], and which
is denoted by

g(r) =4nrlp(r).

2(r) is the local density of atoms at a distance r from a particular atom averaged with
the respect to the choice of this atom. However, for quantitative comparisons the closely
related correlation function

t(r) =g(r)/r

is usually used. For example, the correlation function corresponding to a perfect diamond
cubic structure shows a number of sharp peaks [8]. With increasing randomization the
correlation function becomes more and more featureless, apart from the first and second
peaks which are characteristic of tetrahedral bonding. The most notable difference between
the comelation functions for crystalline and amorphous material is in the absence of the
third peak, which is prominent in the crystalline phase.

An example of the structore resulting from our model of randomization is shown in
figure 1, representing a cross-section through the (111} plane. The corresponding correlation
functions, where an average over the first 200 central atoms was taken into account, are
shown in figure 2. In all simulations, one bond transposition attempt per atom was made on
the average inside the transposition volume. The number of successful bond transpositions
per atom is dencted by c. It ranged from 0.39 to 0.46 for GaAs and from 0.32 to 0.42
for AlpssGagisAs. In all cases the lowest and highest ¢ values yielded crystalline and
amorphous structure, respectively, upon annealing. However, at intermediate values of
c there was no observable correlation between the ¢ values and the resulting structure.
On average, we may conciude that the 5 keV cascade produces amorphous structure in
approximately half of the simulations (curve b in figure 2), while in the other half of the
simulations the correlation function corresponding to the resulting structure (curve a in
figure 2) retains a fair amount of structure characteristic of the crystalline state. Similar
conclusions are also obtained from the bond-length and bond-angle distributions shown
in figures 3 and 4, respectively. It is also seen from table 4 that the RMS bond-length
and angular deviations from their mean values {which are essentially ideatical to the values
corresponding to perfect tetrahedral bonding) are 5.7% and 20%, respectively. These values
are roughly factors of three and two larger, respectively, than the corresponding experimental
values obtained for amorphous Ge [28,29].

Table 4. Average value and &Ms deviation of bond lengths and bond angles.

Bond length (ap) Angle between bonds

Perfect crystal 0.4330 109°28
‘Crystal + defects” 04348 + 4.6% 109716 + 16%
*Amotphous’ 04332 + 5.7% 108°24" + 20%




7918 1 Jenéié et al

Figure L, (111) ptane: (a) a perfect zincblende lattice, (b) a deformed, 'amorphized’ structure.
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0 02 04 06 08 1 1.2 14 18
rla)
Figure 2, ROF for two simulations of GaAs and Alp gsGag,15As: (a) the presence of higher-order-

neighbour peaks suggests a crystalline structure with some localized defects; (b) non-existence
of higher-order-neighbour peaks suggests an amorphous structure.

As we have already mentioned, the contribution of the Coulomb part to the short-range
potential is, in the approximation considered (equation (7)), around 6%. Consequently, the
results of the simulation may be also compared with the corresponding results for Si and
Ge obtained in [8] and applicable to type-IV semiconductors. It has been shown by Wooten
and Weaire [8] that the initial randomization characterized by ¢ = 0.3 corresponds, apart
from the first- and second-neighbour peaks, to a completely featureless correlation function,
yet the subsequent anpealing process leads back to the original diamond structure. In our
case we have the initial randomization characterized by 0.32 £ ¢ £ 0.46, and the annealing
process, governed by the thermal-spike model, almost restores the original crystalline state
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distribution [arbitrary units)
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Figure 3, The distribution of bond lengths for two simulations: (a) structure with some
crystalline order remaining; (b) amorphized structure.

distribution [arbitrary units]

0 20 40 60 8O 100 120 140 160 180
bond angle [degrees]

Figure 4. The distribution of bond angles for two simulations: (a) structure with some crystalline
order remaining; (b) amorphized structure.

(¢ < 0.1) in half of the cases, while in the other cases we obtain a random structure, At the
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same time we can see from figure 2 and table 4 that the annealing process is less effective in
reducing the bond and angular distortions when dealing with local amorphization compared
to an infinite amaorphous structure. In spite of this deficiency of the annealing process, which
is also present to a lesser degree in the sillium model, we may conclude, in view of the above
comparison, that a 5 keV displacement cascade is probably too small to generate sufficient
initial randomization. This conclusion is strengthened even further when one considers the
dependence of the structare factor (G on the degree of initial randomization {30].

The results of the simulations have also shown that the Martin potential employed in
this calculation is far too simple to account for the differences in behaviour of GaAs and
AlogsGag 15As under irradiation. In this context we suggest two immediate modifications,
which should improve the model. First of all, the virinal-crystal approximation is probably
not adequate to bring out the difference between the behaviour of GaAs and Al,Ga;_,As
under irradiation. In this approximation the parameters corresponding to GaAs and
AlpgsGag,5As differ only by about 10%. In future calculations one should distinguish
between @Ga-As: Qal-as, Bas-Ga-As» BGCa-As-Gas PAs-Al-Asr Pai-As-al 2nd Bai_as-Ga, the
values of which could perhaps be estimated with the use of bond-orbital approximation
[12,13]. Moreover the approximation (7) should be dropped and the expression (5) should
be used for the calculation of Coulombic interaction.

On a more ambitious note, one could also dispose of the rigid-ion model itself. In
the past various models have been proposed. Especially detailed analysis, also including
IT-V compounds, has been performed by Kunc and coworkers [31-33]. Their results
can be incarporated into our calculation on the basis of the following observation. The
displacements of the ions destroy the high symmetry of the corresponding lattice sites
and lead to the appearance of the polarization of the crystal. We account for this by
associating with each lattice site (this may prove ambiguous especially in the case of -V
compounds with partly ionic character of covalent bonds) a charge distribution characterized
by muitipole moments. Following Kunc et al [32,33] we write the o-component of the
dipole moment at the lattice site [ = (i, 5) as

fl!) = q u{(‘l’) + Z m(ﬂfus) (ﬂ) + Zal(c;’ﬁ)E(ﬂ)([ ) (24)
B B

g = =g is the static ionic charge determined by fitting to the piezoelectric constant,
mf";‘s ) are called mechanical polarizabilities or deformabilities, and a,(f’f,'ﬂ ! are the electronic
polarizabilities representing the response of the electronic charge to the effective electric
field. This field may be calculated for a giveén lattice site by the application of Ewald's
method as described in [16). However, in the case of a single amorphous zone, where the
ionic displacements are limited to a localized region, we can solve the resulting equation

by iteration and write in the first approximation

Eur(l) = Z( qH-f{DW
FeAZ IGURHI
J
3R - u)RY — RO w
+ Z( (Ry - w) u(o)s i T 25)
reAZ dmweg Ry,

where ! belongs, in general, to an arbitrary lattice site. Inserting (23) in (24) we obtain a
reascnable approximation for the dipole moment associated with the lattice site { which can
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be used then in (5) instead of g{w,t. The transverse effective charge e}eg can be expressed in
terms of the high-frequency dielectric constant ¢; and Szigeti effective charge g*, which, in
turn, can be written in terms of the static jonic charge ¢ and the mechanical polarizabilities
[32].

Extending the rigid-ion model in the manner indicated above inevitably brings new
parameters into the model. Such parameters are usually determined by fitting to the
available experimental data. Even if sufficient experimental data exist, such a procedure
often proves very ambiguous and it is difficult io assign a clear physical meaning to all the
parameters. This point has been emphasized very clearly already in [32] where it also has
been demonstrated that when attempting to establish more sophisticated models, the results
of simpler models may provide a very oseful guide.

Acknowledgments

This research was supported by the Ministry of Science and Technology of Slovenia. IMR
would like to acknowledge support from DOE, contract DEFG02-91-ER45439

References

{1} Jentit i, Bench M W, Robertson 1 M and Kirk M A 1991 J. Appl. Phys. 69 1287
[2] JenZit I, Bench M W, Robertson I M, Kirk M A and Peternelj J 1991 Nuc!. Instrum, Methods B 59/60 458
{3] Thompson D A 1981 Rudiar. Eff. 56 105
{4] Vetrano J S, Bench M W, Robertson 1 M and Kirk M A 1989 Metall, Trans. A 20 2673
{51 Beach M W, Robertson 1 M and Kirk M A 1988 Mater. Res. Soc. Symp. Proc. vol 100 (Pitisburgh, PA:
Materials Research Group) p 293 :
[6] Bench M W, Robertson I M and Kirk M A 1991 Nuel. Instrun. Methods B 59/60 372
[7] Zachariasen W H 1932 J, Am. Chem. Soc. 54 3841
[8] Wooten F and Weaire P> 1987 Sofid State Physics vol 40 (New York: Academic) p 1
[9] Metropolis N, Resenbiuth A W, Rosenbluth M N, Teller A H and Teller E 1953 J. Chem. Phys. 21 1087
[10] Keating P N 1966 Phys. Rev. 145 637
{11] Leigh R §, Szigeti B and Tewary V K 1971 Proc. R. Soc. A 320 505
[12] Harrison W A 1989 Electronic Structure and the Properties of Solids (New York: Dover)
[13] van Schilfgaarde M and Sher A 1987 Phys. Rev. B 36 4375
f14] Musgrave M J P and Pople ] A 1962 Proc. R, Soc. A 268 474
f15] Bom M and Huang K 1954 Dynamical Theory of Crystaf Lattices (Oxford: Oxford University Press)
[16] Maradudin A A, Montroll E W, Weiss G H and Ipatova 1 P 1971 Theory of Lattice Dynamics in the Harmonic
Approximation {Solid State Physics Supptement 3) 2nd edn (New York: Academic)
[17] Martin R M 1970 Phys. Rev. B T 4005
[18) Lyddane R M, Sachs R G and Teller E 1941 Phys. Rev. 59 673
[19] Adachi 5 1985 J. Appl. Phys. 58 R1
[20] Chen A B and Sher A 1981 Pkys. Rev. B 10 3360
[21] Mastin R M 1972 Phys. Rev. B 5 1607
[22] Bennett B 1 and Maradudin A A 1972 Phys. Rev. B § 4146
[23] Martin R M 1974 Phys. Rev. B 9 1998
[24] Martin R M and Kunc K 1981 Phys. Rev. B 24 2081
[25] Van Vechten J A 1977 Inst. Phys. Conf. Ser. 31 (Bristol: Institute of Physics) p 441
[26] Seiiz F and Koehter ) § 1956 Solid State Physics vol 2 (New York: Academic) p 303
{27] Averback R 8§, Diaz de la Rubia T, Hsieh H and Benedek R 1991 Nue!l. instrum. Methods B 59/60 709
{28} Etherington G, Wright A C, Wenzet J T, Dore } C, Clarke J H and Sinclair R N 1982 J. Non-Cryst. Solids
48 265
[29] Temkin R H, Paul W and Connell G A N 1973 Adv. Phys. 22 581

T We also omit €, since the charge redistribution effects are now contained in the polarizabilities,



7922 I Jenéié et al

{30] Wooten F and Weaire D 1986 J. Phys. C: Solid Stare Phys. 19 L41]

{31) Kune K 1973-1974 Ann. Phys, Lpz. 8 319

{32] Kunc K, Balkanski M and Nusimovici M A 1975 Phys. Status Solidi b 71 341; 1975 Phys, Status Solidi b
72 2208 249

[331 Kunc K, Balkanski M and Nusimovici M A 1975 Phys, Rev. B 12 4346



